Early and Middle Archaic Period, 9,500–6,000 BP

David Sanger, Brian S. Robinson

With the end of glacial times and the beginning of the Holocene epoch, new artifacts and different lifeways came to characterize the late Holocene (or post-Clovis) period, spanning nearly 7,000 years. During the Early Archaic period (9,500–8,000 calendar years before present) tool kits were dominated by local stones such as quartz, felsite, and slate instead of the more exotic stones that were carried long distances by earlier ice-age people. Spear points made of flaked stone occurred only rarely in the Early Archaic period of Maine. However, finely made ground and polished stone tools of the Gulf of Maine Archaic tradition became common during the latter half of this period, including full-ground gravers (for woodburning), oval axes, and dented stone rods (whittlers). Elaborate burial ceremonialism also appeared at this time, with some of the earliest formal mortuary customs in North America established in what became New England, creating ritual patterns that expanded greatly in Maine in the Middle and Late Archaic periods.

The end of the ice age marked major changes in both terrestrial and marine habitats. River drainages assumed their modern configurations, but water levels were subject to dramatic change, influencing fish and mammal habitats as well as travel routes. From initial wetter times there was a period of low water in many lakes and ponds between 8,000 and 6,000 BP. The development of marshes and bogs in eastern Maine provided new resource habitats. Vegetation patterns changed through time, but generally with contrasts in species between western and eastern Maine. These patterns influenced the distribution of large mammals such as deer, moose, and caribou. With the rise in sea level, the coastlines assumed its present form, marked by long sandy beaches in western Maine, and rocky shorelines in eastern Maine. The strongly dissected coast of eastern Maine, with its numerous promontories and islands, provided more places for people to settle and collect coastal foods.

Sea Level Change

- **Present level**: Sea level was about 150 feet below the present.
- **Modern**: Sea level is currently at about 3 feet above the present.
- **Radiocarbon years before present**: This chart shows the relative stability during the Early and Middle Archaic periods when shorelines were about 15 meters (or 50 feet) lower than at present. The conversion from "radiocarbon years" to "calendar years" for each time period is shown here. For example, 6,000 radiocarbon years before present (6,000 BP) corresponds to about 4,000 calendar years before present (4,000 years ago).

Riverbank Site

Periodic river floods deposited sandy sediments in valleys, creating ideal camping sites for Native peoples. The sediments also buried and separated each settlement or cultural layer. In this archaeological site on the Penobscot River near Milo, the white tags identify different sediments and occupation levels spanning 4,000 years.

Middle Archaic Period

- **Projectile Points, Western Maine**: The Projectile Points complex became more common in western Maine.
- **Ground Stone Tools, Eastern Maine**: Direct evidence includes slate spearheads, stone rods (whittlers), and full-ground groovers, shaped and sharpened by grinding.

The Beginning of the Regional Divide

Starting with the Middle Archaic period, archaeologists recognize two major cultural regimes in Maine separated roughly at the Kennebec River. Western Maine tool technology resembles those of southern New England, while those of eastern Maine resemble those of the Maritime Peninsula.

Changing Water Levels at Mansell Pond

- **Modern**: Water levels at Mansell Pond are currently at about 3 feet above the present.
- **4,000 BP**: Water levels were about 150 feet below the present.

Vegetation Change, Mansell Pond

- **Modern**: This pollen profile from Mansell Pond shows changes in percentages of tree pollen and illustrates the fluctuating composition of forests in eastern Maine over 8,000 years. The dramatic changes in species around 6,000 years ago reflect a warmer and wetter climate.